专利摘要:
イメージング・システムは:円筒軸(DA)を定義する円筒穴(36)を持つ磁気共鳴スキャナー(30)、該穴内に中心(64)及びその中心を通り、円筒軸の横方向に配置された等角面(66)を定義する勾配コイル(10、10’)を持つ磁気共鳴スキャナー;円筒穴と同心で配置され、穴の内部から放射される放射線を検出するように構成された放射線検出器のリング(60a、60b);及び円筒穴と同心で配置され、等角面に中心が置かれた概して管状の電子回路ボード(62、62’);を有し、該概して環状の電子回路ボードは、放射線検出器のリングによる放射線の検出を示す電気信号を発するように、放射線検出器のリングに操作かのうなように接続されている。
公开号:JP2011514518A
申请号:JP2010547274
申请日:2009-02-02
公开日:2011-05-06
发明作者:ヴァイスラー,ビョルン;シュルツ,フォルクマー;ヨット ゾルフ,トルステン
申请人:コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ;
IPC主号:G01T1-161
专利说明:

[0001] 下記は、イメージング技術に関する。下記は、ハイブリッド磁気共鳴走査及び陽電子放出トモグラフィ(PET)システムへの事例的応用を見いだし、それらに関して具体的に説明する。以下は、磁気共鳴走査機能及び高感度の放射線検出器エレクトロニクスを採用する他の第2イメージング・モダリティを全て含むハイブリッド・イメージング・システムに対するより一般的な応用を見いだす。]
背景技術

[0002] マルチ・モダリティ又は磁気共鳴(MR)及び陽電子放出トモグラフィ(PET)機能の両方を含むハイブリッド・スキャナーにおいて関心が向けられている。例えば、Fiedler et al.による特許文献1は、様々なハイブリッド・イメージング・システムを開示している。その参考文献において開示されているいくつかのハイブリッド・システムの実施形態において、固体PET検出器素子が、利用可能な円筒穴の空間を効率的に使用するために、全身用バードケージコイルの段(rung)の間に配置されている。MR環境における使用では、固体シリコン光電子増倍管(SiPM)に結合されたシンチレータなどの固体PET検出器は、特許文献1で考察されるように、従来型光電子増倍管(PMT)検出器に結合されたシンチレータに対して利点を有する。]
[0003] 従来型PETシステムにおいて、PET検出器は、試験領域の360度をカバーするように、完全な環状リングとして配置される。完全に環状でない検出器リングの使用は、一般的に、データの紛失及びイメージング・アーチファクトが導入される可能性をもたらす。しかし、PET検出器の環状リング構成は、MRシステムとの統合に関する問題を示す。なぜならば、そのMRシステムによって生成される磁場が、環状PETリングにおいて渦電流を誘導し得るからである。]
[0004] PCT国際公開第2006/111869号明細書
米国特許出願第2006/0033496号明細書]
先行技術

[0005] Peeren,“Stream Function Approach for Determining Optimal Surface Currents”,Journal of Computational Physics vol.191 pages305-21(2003)
“Stream Function Approach for Determining Optimal Surface Currents”,Doctoral Thesis of Gerardus N. Peeren(Eindhoven University of Technology 2003)]
発明が解決しようとする課題

[0006] 以下は、上記の問題及びその他を克服する新しい改善された装置及び方法を提供する。]
課題を解決するための手段

[0007] 1態様に従って、イメージング・システムは、放射線を検出するように構成された放射線検出器のリングを有し、放射線検出器のリングに同軸で配置され、その放射線検出器のリングによる放射線の検出を示す電気信号を発するようにその放射線検出器のリングに動作可能なように接続された概して環状の電子回路ボードを有する。]
[0008] もう1つの態様に従って、イメージング・システムは:円筒軸を定義する円筒穴を持つ磁気共鳴スキャナー、その穴内におけるアイソセンタ(isocenter)を定義し、そのアイソセンタを通り抜ける等角面を有し、その円筒軸の横方向に配置されている磁場勾配コイルを含む磁気共鳴スキャナー;その円筒穴と同心で配置され、その穴の内部から放射される放射線を検出するように構成された放射線検出器リング;その円筒穴と同心で配置され、等角面上に中心が置かれた概して環状の電子回路ボードを有し、その概して環状の電子回路ボードは、放射線検出器のリングによる放射線の検出を表示する電気信号を発するように、放射線検出器のリングに動作可能なように接続されている。]
[0009] もう1つの態様に従って、イメージング法は:中心及び等角面を定義する磁場勾配コイルを持つ円筒穴磁気共鳴スキャナーを使用して、磁気共鳴データを取得する段階;放射線検出器のリングを使用して放射線を検出する段階;及びその等角面に配置された導電性経路に沿って放射線を検出する段階;を含む。]
[0010] 1つの利点は、ハイブリッドのPET/MRスキャナーのPET要素において低減された渦電流を供給することにある。]
[0011] もう1つの利点は、ハイブリッドPET/MRスキャナーのPET要素において低減されたローレンツ力を供給することにある。]
[0012] もう1つの利点は、さらに小型のPET/MRスキャナーを供給することにある。]
[0013] 本発明のさらなる利点は、以下の詳細な記載を読み、理解した上で当業者にとって明らかになるであろう。]
図面の簡単な説明

[0014] 事例的な分割磁場勾配コイルの斜視図を概略的に示す。
事例的な分割磁場勾配コイルの端面図を概略的に示す。
磁気共鳴(MR)スキャナー機能及び陽電子放出トモグラフィ(PET)機能を有するハイブリッド・システムの斜視図を概略的に示し、MRスキャナーは図1及び2の分割勾配コイル、及びその分割勾配コイルの中央ギャップに配置された概して環状のPET検出システムを使用する。
図3のハイブリッド・システムの勾配コイル及びPET検出システムの側面図を概略的に示し、磁気共鳴及び対象のPET領域、MRスキャナーのアイソセンタ及び等角面、MRスキャナーの全身用RFコイル、及び付属の飛行時間型プロセッシング・エレクトロニクスの概略的な表示と共に示す。
図3のハイブリッド・システムのPET検出システム及び全身用RFコイルの端面図を概略的に示し、磁気共鳴及び関心のPET領域、MRスキャナーのアイソセンタ、及び付属の飛行時間型プロセッシング・エレクトロニクスの概略的な表示と共に示す。
図3のハイブリッド・システムの変形型の勾配コイル及びPET検出システムの側面図を概略的に示し、勾配コイルは分割しておらず、概して環状のPET検出システムの概して環状の電子回路ボードは、異なる構成を持つ。] 図1 図3
[0015] 図1及び2を参照して、分割磁場勾配コイル10が、円筒軸DA(図1において破線矢印で示される)に関して概して円筒型であり、主要コイル巻線12及びその主要コイル巻線よりも大きい半径位置にあるシールド・コイル巻線14を含む。分割勾配コイル10は、コイル巻線に束縛されない環状の中央ギャップを有する。その中央ギャップの各端部に置かれた接続伝導体18は、選択された主要及び第2コイル巻線を電気接続する。分割磁場勾配コイル10は、横磁場勾配Gyを、少なくとも関心の磁場共鳴領域R(図2の点で描かれた境界線によって概略的に示される)において軸方向に配置された静的磁場に重ねるように動作可能である。x方向における横磁場勾配を生成するための分割磁場勾配コイルは、同様に、コイル巻線12、14を、Gy磁場勾配を生成するコイルに関して90°回転させることによって形成できる。中央ギャップ16から遠位部にあるコイルの端部に配置された接続伝導体20は、選択された主要及び第2コイル巻線を接続し、その選択された主要及び第2巻線は、接続伝導体18によって中央ギャップ16の近位部で接続されている選択された巻線と場合によっては同一であるか、又は異なる。いくつかの主要巻線又は第2巻線は、接続伝導体18、20のいずれによっても接続されていない分離された巻線であってもよい。] 図1 図2
[0016] 接続伝導体20は、例えば、本文献に参考として全体的に取り入れられる非特許文献1において開示されているように、比較的より大きくより均一な視野を提供する。接続伝導体18は、中央ギャップ16における磁気的に操作可能な電流密度の不足を捕捉する、中央ギャップ16の付近のゼロでない電流密度を可能にする。この捕捉によって、許容可能なコイル効率及び磁場の質をまだ維持する一方、より大きい中央ギャップ16を生成することが可能になる。中央ギャップ16は、511keVの放射線を検出するように構成されている放射線検出器のリングを適合するように、少なくとも10cm、さらに好ましくは少なくとも約15cm、及びいくつかの実施形態では少なくとも20cmである軸方向範囲Wを有する。接続伝導体セット18、20のいずれか一方又は両方を除外することも検討されている。]
[0017] コイル巻線12、14、18、20の構成は、関心の磁気共鳴領域を少なくとも交差して、適切な磁場勾配均一性を供給するように設計されている。そのような設計は、例えば、本文権に全体として参考に取り入れられている特許文献1及び特許文献2に記載されているように、ストリーム機能アプローチを使用して適切に実行される。ストリーム機能アプローチは、ストリーム機能によって提示されるように、連続的な電流密度分布を決定し、それは、特定された磁場分布を供給し、次にコイル巻線分布を得るために、取得されたストリーム磁場機能を離散化する。]
[0018] 図3を参照すると、分割勾配コイル10は、磁気共鳴スキャナー30において、操作中に分割勾配コイル10の2つの半分の間で時々生成されるローレンツ力に適合できる誘電体形成器又は他の固定支柱に支持されている。磁気共鳴スキャナー30は、さらに、関心の磁気共鳴領域Rにおける軸方向に配置された静的磁場B0を生成する主要磁石を定義する低温ハウジング34に配置された主要磁気巻線32を含む。磁気共鳴スキャナー30は、概して円筒型の分割勾配コイル10及び主要磁石巻線32と同心である円筒穴36を定義し、従って、概して円筒型の構成要素10、30、32は、共通の円筒軸DAを共有する。適切な支柱38は、穴36におけるうつぶせのヒトの患者又は他の対象物を支持するように供給され、そうすることによって少なくともその対象物の関心領域が、磁気共鳴取得領域R内に存在する。] 図3
[0019] 図3のスキャナーは、ハイブリッドのPET/MRスキャナーであり、分割勾配コイル30の環状中央ギャップ16に配置された概して環状のPET検出システムを有する。その概して環状のPET検出システム40は、PETイメージング領域RPETを撮像するように構成されており、そのPETイメージング領域は、磁気共鳴イメージング領域Rと同じ体積であってもよく、又は、図4‐6に示されるように、異なるサイズであってもよく、並進的に相殺されてもよく、異なる形状であってもよい。環状の留め具42は、分割勾配コイル30の半分をギャップ16の領域において支持する。PET検出システム40は、この説明された実施形態において、留め具42における開口46及び磁石ハウジング34における開口48を通りぬける搭載部材40によって独立して支持される。開口48は、ハウジング34の真空及び低温貯留層完全性を維持するように、適切に密閉された管状開口である。PET検出システム40の独立した支持は、分割勾配コイル10が操作の間にローレンツ力によって動き、加速する傾向があることから有利である。勾配コイル10のいくらかの動作は、頑丈な誘電体形成器、留め具42又は他の機械的拘束具によって拘束されているときでさえも、予測される。そのような動作は、PET検出システム40に移送される場合、取得されたPET画像の劣化をもたらす。] 図3 図4
[0020] 図3の構成は、説明に役立つ例である。他の検討される実施形態では、留め具42は、連続的な硬い円筒型誘電体形成器ユニットのために除外されており、PET検出システム40は、硬い形成器の管状の凹みに搭載され、空気軸受などの振動分離架台によって硬い形成器から振動分離される。アクティブ制御される振動補正も、また、MEMS加速計によってフィードバック制御される複数の圧電アクチュエータ架台によって実現されてもよい。分割していない、環状ギャップ16を持たない勾配コイルを使用することもまた検討されている。そのような実施形態において、概して環状であるPET検出システムは、非分割勾配コイルの内部においてより小さい半径で適切に配置される。] 図3
[0021] ハイブリッド・システムは、簡略化のために表示されていない他の構成要素を含んでもよい。例えば、高周波スクリーン(図3に表示されていない)は、RF分離を供給するために開口48の中まで伸びてもよい。追加のパススルー開口が、PET検出システム40の電気接続及び他の接続に対して供給されてもよく、あるいはそのような接続は、選択された搭載部材44に沿って又はその内部に通されてもよい。そのパススルー開口が比較的小さいため、それらは、主要磁石の磁石設計が実質的にPET検出システムの追加によって左右されないように、主要磁石巻線32の中にまき散らされてもよい。磁気共鳴スキャナーは、また、1つ又はそれ以上のRFコイル(図3に表示されていない)を採用し、そのようなコイルは、任意に、穴36において配置された局部コイル、穴36と同心で置かれた概して環状の円筒型全身用コイル、又はそれらの組み合わせを含む。] 図3
[0022] 図4及び5を参照すると、概して環状のPET検出システム40は、PETイメージング領域RPETを撮像するように設計された放射線検出器のリングを含む。図4及び5の実施形態において、その概して環状のPET検出システム40は、ディスク形状の電子回路ボード62に関して対称的に配置された2つの放射線検出器のリング60a、60bとして設計されている。放射線検出器のリング、60a及び60bは、リングにおいて角度のギャップをいくつか持つこともまた検討されているが、一般的に360°に及ぶ完全なリングである。図4及び5はまた、全身用クォドラチャー(quadrature)バードケージ又は横方向電磁(TEM)コイルなどの典型的な全身用RFコイル63を概略的に示す。例示された全身用コイル63は、勾配コイル10及びPET検出システム40よりも小さい半径で配置されている。適切な配置において、軸方向に配置された全身用RFコイル63の伝導体(図5の断面図において概略的に描かれている)は、511keVの放射に対して透過性であるように十分に薄い伝導性銅ストリップ・ラインで適切に作成されている。他の実施形態において、全身用RFコイルは、環状PET検出システム40と共通の半径を有してもよく、軸方向に配置された伝導体は、PET検出器モジュールの間で方位角の位置に配置されている。さらに、いくつかの実施形態において、全身用RFコイル63は、全て一緒に除外され、表面コイル又はコイル・アレイなどの局部コイル、局部ヘッド・コイル又はそのようなものは、高周波励起及び磁気共鳴検出の両方を供給するために使用される。] 図4 図5
[0023] 放射線検出器のリング60a、60bは、PETイメージングに適切であるように511keVの放射線を検出するように構成されている。詳細には表示されていないが、放射線検出器のリング60a、60bは、例えば、511keV放射線への露出に反応しシンチレーションを発する物質で作られたシンチレーション層の従来の構成、及びシンチレーションを検出するように配置された光電子増倍管(PMT)検出器のアレイであってもよい。他の実施形態において、PMT検出器は、シンチレーションを検出するように構成されたシリコン光電子増倍管(SiPM)検出器個体検出器又はアバランシェ・フォトダイオード(APD)検出器によって置き換えられてもよい。]
[0024] ディスク形状の電子回路ボード62は、概して環状であり、放射線検出器のリング60a、60bと同軸に配置され、その放射線検出器のリング60a、60bによる511keV放射線の検出を示す電気信号を発するように、動作可能なように接続される。回路ボード62に対して、360°よりも小さい角度範囲に及ぶようにすることが検討されており、それはつまり、概して環状の回路ボード62が1つ又はそれ以上の角度ギャップを持つことである。放射線検出器60a、60bと回路ボード62との間の動作接続は、通常、PMT検出器、SiPM検出器、APD検出器、又は他の検出器を交差して動作電圧バイアスを加えるために、電気バイアス接続を含み、511keV放射線の検出を示す検出器からの電流パルス又は他の電気信号を受けるように電気接続を含む。]
[0025] ディスク形状の概して環状である電子回路ボード62は、ガルバニ・パワー、バイアス電圧、及び信号接続などのPETバックボーン・エレクトロニクス及び導電性のパワー、バイアス電圧及び信号経路、基準クロック分布経路、同期化回路、及びその他を含む。任意に、パルス統合化及びアナログ‐デジタル変換(ADC)、時間‐デジタル変換(TDC)、単一及び同時イベント・プロセッシング及びその他などのさらに高レベルな機能も、そのディスク形状の概して環状の電子回路ボード62に統合されている。その代わりに、いくつか又は全てのさらに高レベルの機能が、例えば、ADCカード又は他の適切な接続ハードウェアによって環状PET検出システムと動作可能なように接続された付属のコンピュータによって統合されて、環状PET検出システム40から遠く離れて配置されてもよい。いくつかの実施形態において、電子回路ボードは、アルミニウム、銅又は他の導電性物質の導電性接地板を含んでもよい。そのような接地板は任意に、エレクトロニクスの吸熱を供給するか又はそれに貢献してもよい。]
[0026] 放射線検出器のリング60a、60b及び概して環状の電子回路ボード62を含むPET検出システム40は、分割勾配コイル10の中央環状ギャップ16に配置されている。分割勾配コイル10は、軸方向又は円筒軸DAに平行であるz方向に沿った方向、及び軸方向又はz方向に直交するx方向及びy方向に沿った方向などの選択された方向に沿って磁場勾配を発する。分割勾配コイル10は、空間的に変化する(通常直線的に空間的に変化する)磁場を磁気共鳴イメージング体積Rにおける静的磁場B0に重ねることによってそのような勾配を生成する。その生成された勾配は、また、時間と共に変化する。分割勾配コイル10は、アイソセンタ64が存在するように設計され、そのアイソセンタは、その重ねられた空間的に変化し、時間的に変化する磁場が、瞬間的に生成された磁場勾配の方向及び強度に関係なくゼロである空間における点である。これは、分割勾配コイル10に関して説明されているが、勾配コイルが分割勾配コイルであるか否かに関係なくそのようなアイソセンタを有することは、典型的な勾配設計の習慣である。アイソセンタ64は、通常、図4及び5に示されるように、磁気共鳴イメージングの間に撮像される関心の磁気共鳴領域Rの中心に位置する。しかし、そのアイソセンタは、他の場所に位置し、いくつかの実施形態においては、そのアイソセンタの位置は、勾配コイルのDC調整によって、所定の磁場勾配コイルに対して任意に調節される。] 図4
[0027] 磁場勾配は、一般的に事実上3次元であり、例えば、3つのデカルトx、y及びz方向のうちのいずれかに沿って発生することが可能であるため、アイソセンタ64は空間における点である。ここで説明されるような円筒型磁気共鳴スキャナーに関して、アイソセンタ64を通り抜け、軸方向又は円筒軸DAに直交する勾配コイルの等角面66を定義することも便利である。軸方向の磁場勾配に対して、つまり、円筒軸DAに沿った磁場勾配に関して、重ねられた変化する磁場は、等角面66において理想的にはゼロであり、等角面66を交差する全ての場所において一般的に小さい。横磁場勾配に対して、つまり、円筒軸DAを横断して配置された勾配に対して、重ねられた変化する磁場は、一般的なルールとしては等角面66においてゼロではないが、勾配コイル半径の位置と同程度の半径方向の位置では通常小さい。]
[0028] 従って、図4において表わされるように、概して環状である電子回路ボード62を勾配コイル10の等角面66において配置されたディスクとして構成することによって、その電子回路ボード62は、低い又はゼロのマグニチュードの勾配コイル10によって重ねられた時間変化する磁場に曝露される。結果として、導電体、接地面又はその概して環状の電子回路ボード62の他の導電性素子における時間変化する磁場勾配によって誘導される渦電流は、低いか又はゼロのマグニチュードを有する。概して環状の電子回路ボード62における磁場勾配によるローレンツ力もまた低いか又はゼロである。] 図4
[0029] 0.2‐0.3ミリメートルの範囲における層距離を有する典型的なプリント回路ボードに対して、誘導される信号が発生する可能性のある領域は十分に小さいため、磁場勾配によって誘導される電圧は約10ミリボルトよりも小さい。大量な電力(1キロワットよりも大きい)が、例えば、回路ボード62を製造するための従来型の多層プリント回路ボードのストックを使用するなど、いくつかの低抵抗の銅面を使用することによって面の内部に分布される。電力面は、また、内部層として配置されたさらに高感度の高速信号層に対してシールドを供給するように多層回路ボードの外層として配置することもできる。]
[0030] 概して環状の電子回路ボード62は、図5において連続的な環帯として示されているが、その概して環状の電子回路ボード62の中へ、又はその概して環状の電子回路ボード62の導電性経路の中へ、渦電流形成をさらに抑制するために、1つ又はそれ以上の切断を導入することが検討されている。いくつかの実施形態において、電子回路ボード62の回路は、概して環状の電子回路ボード62の円周又は穴36の周りと同延の、完全に環状の導電性経路はどれも定義しない。] 図5
[0031] 概して環状の電子回路ボード62を環状PET検出システム40のバックボーンとして使用することのもう1つの利点は、そのバックボーンに柔軟な導電性ケーブルを使用することに比較して、その概して環状の電子回路ボード62の回路は、硬く固定された経路長を有することである。概して環状の検出PETシステム40からの信号は、基準タイミングユニット70で、同時イベントプロセッサに入力される。電子回路ボード62の硬く固定された経路は、有利にも、電子‐陽電子対消滅イベントを示唆する実質的に同時の511keV放射線検出イベントを検出するように、放射線検出イベントの正確な相対的なタイミングを決定することを可能にする。ユニット70は、PETシステムが飛行時間型局地化を実施する場合、任意の飛行時間型プロセッサを組み入れるか、又はそれにアクセスする。そのような飛行時間型プロセッサにおいて、2つの実質的に同時の511keV放射線検出イベント間の飛行時間の相違は、空間における電子‐陽電子対消滅イベントをさらに局地化するために使用される。そのような、飛行時間型プロセッシングは、電子回路ボード62によって定義される正確な電気信号伝送遅延によって促進される相対的な検出イベント時間の正確な決定を必要とする。対照的に、柔軟なケーブルは、方向又は長さが変化する経路長をもたらし、それは、より不正確な飛行時間プロセッシング又はPETシステムの複雑さ及び費用を増加させる光同期の含有につながる。飛行時間型プロセッシングは、反応ライン(line of response)を定義する実質的に同時の511keV検出イベントを各々が含んだ飛行時間型PETデータを生成し、その反応ラインに沿ったいくつかの局地化は、飛行時間型情報によって供給される。飛行時間型プロセッシングを持たない従来型PETにおいて、電子‐陽電子対消滅イベントは、反応ラインのみに局地化される。従来型PETに対して、電子回路ボード62によって供給された硬く固定された経路長は、良く定義された電子信号伝送遅延をいまだに保証し、実質的に同時の511keV検出イベントを識別するための強固な時間ウィンドウィングを提供する。PETデータ(従来型又は飛行時間型のいずれか一方)は、PETシステム制御及びデータ保存ユニット72において適切に保存され、フィルタリングされた逆投影法、反復逆投影法などの適切な再構築アルゴリズムを使用して再構築される。]
[0032] 図6を参照すると、ディスク形状の概して環状の電子回路ボード62の利益は、等角面66に近く配置された他の形状の概して環状の電子回路ボードによってもだいたい実現されることである。図6の実施形態において、改良された勾配コイル10’は分割していないが、改良された概して環状のPET検出システム40’を受けるようにむしろ溝16’を有する。その溝16’は、ディスク形状の電子回路ボード62の大きい半径範囲には適さない。従って、概して環状の電子回路ボード62’は、放射線検出器のリングの面、つまり図6のハイブリッド・スキャナー配置の等角面66を横断する方向に全ての場所において局地的に配置され、改良された放射線検出器のリング60’よりも大きな環状半径で配置されている。概して環状の電子回路ボード62’は、等角面66に近く保たれるように、放射線検出器のリングの面を横断して少し広がるように構成されている。] 図6
[0033] 例示されていないが、ディスク形状の概して環状の電子回路ボード62に横方向に配置された概して環状の回路ボード62’との組み合わせである概して環状の電子回路ボードもまた検討される。例示されていないが、環状回路ボード62は、PET検出器60(好ましくは外側の面から)を、物理的に接続されたままである60a及び60bに部分的に分割することによってのみ実現される。そのような配置において、バス導電体及び他の細長いかあるいは回路ボードの環帯と実質的に同延の導電性経路を形成する伝導体は、好ましくは、時間変化する磁場暴露が最も少ないディスク形状のボード部分60に配置される。これらの実施形態において横方向に配置された回路ボード部分62’は、好ましくは、PMT、SiPM、APD又は他のバイアス及び信号バスの近位部分がディスク形状のボード部分60に位置している検出器よりも短い導電体の長さに対して使用される。]
[0034] 同様に、横方向に配置される場合、概して環状の回路ボード62’は、図6に示されるように単体として使用され、次にバス伝導体及び他の細長いかあるいは回路ボードの環帯と実質的に同延の導電性経路を形成する伝導体は、好ましくは、時間変化する磁場暴露が最も少ないように、勾配コイル10’の等角面66に実行可能な限り近く、回路ボード62’上に配置される。] 図6
[0035] ハイブリッドPET/MRシステムが説明されたが、開示されたPETバックボーン構成は、また、単独型PETスキャナー、PET/SPECT(単一光子放出コンピューテッド・トモグラフィ)システムなどにおいても適切に利用される。さらに、PET検出器の他にも他の放射線検出器をMRシステムと統合することが検討されている。例えば、放射線検出器のリング60a、60b、60’は、単一光子放出コンピューテッド・トモグラフィ(SPECT)イメージングに対する複数の放射線検出器によって置き換えられることが出来る。そのような実施形態において、放射線検出器は、通常、511keVと異なり得る放射線を検出するように構成されている。SPECT/MRに対し、いくつかの実施形態における放射線検出器のリングは、いくつかのガンマ・カメラにおいて使用される放射線検出器ヘッドの構成に似て、リングに沿って移動することが可能な(すなわち、分割勾配コイル10の環状ギャップ16に沿って移動する、又は勾配コイル10’の溝16’に沿って移動する)可動型放射線検出器として構成されてもよい。そのようなSPECT/MRシステムは、事例的なPETシステム40に関して本文献で事例的に開示されているバックボーン構成62、62’を容易に使用することができる。]
実施例

[0036] 本発明は、好ましい実施形態を参照して記載されている。改良型又は変形型は、当業者が前述の詳細な記載を読み理解する上で起案し得る。本発明は、そのような改良及び変形型は、添付の請求項又はそれらの均等物の範囲内にある限り、含まれるものとして解釈されることを目的としている。]
权利要求:

請求項1
放射線検出器のリング;及び該放射線検出器のリングと同軸に配置され、該放射線検出器のリングによる放射線の検出を示す電気信号を発するように該放射線検出器のリングに動作可能なように接続された、概して環状の電子回路ボード;を有するイメージング・システム。
請求項2
前記概して環状の回路ボードがディスク形状である、請求項1に記載のイメージング・システム。
請求項3
前記放射線検出器のリングが、前記ディスク形状の概して環状の回路ボードに関して対称的に配置された2つの放射線検出器のリングを有する、請求項2に記載のイメージング・システム。
請求項4
前記概して環状の電子回路ボードは、前記放射線検出器のリングによって及ぶ半径範囲を少なくとも部分的に重複する半径範囲に及ぶ、請求項3に記載のイメージング・システム。
請求項5
前記概して環状の電子回路ボードが、前記放射線検出器のリングよりも大きい半径で配置され、前記概して環状の電子回路ボードの面は、いずれの場所においても局地的に前記放射線検出器の面を横断する方向に配置されている、請求項1に記載のイメージング・システム。
請求項6
前記概して環状の電子回路ボードは、360°よりも小さい角度範囲に及ぶ、請求項1に記載のイメージング・システム。
請求項7
前記放射線検出器のリング及び前記概して環状の電子回路ボードが、電子‐陽電子対消滅イベントを示す511keV放射線を検出するように構成された請求項1に記載のイメージング・システムであり:磁気共鳴スキャナー、該磁気共鳴スキャナーの磁場勾配コイルの等角面を交差して配置された前記概して環状の電子回路ボード、をさらに含むイメージング・システム。
請求項8
前記概して環状の電子回路ボードはディスク形状であり、前記勾配コイルの等角面において配置されている、請求項7に記載のイメージング・システム。
請求項9
前記放射線検出器のリングは、前記ディスク形状の概して環状の電子回路ボードに関して対称的に配置された2つの放射線検出器のリングを含む、請求項8に記載のイメージング・システム。
請求項10
前記概して環状の電子回路ボードは、前記放射線検出器のリングによって及ぶ半径範囲に少なくとも部分的に重複する半径範囲に及ぶ、請求項8に記載のイメージング・システム。
請求項11
前記概して環状の電子回路ボードが:前記勾配コイルの等角面において存在するディスク部分、を含む、請求項7に記載のイメージング・システム。
請求項12
前記概して環状の電子回路ボードが:前記勾配コイルの等角面に中心が置かれ、前記ディスク部分に横方向に配置された横方向部分、を含む、請求項11に記載のイメージング・システム。
請求項13
前記概して環状の電子回路ボードの回路は、該概して環状の電子回路ボードの円周と同延である完全に環状の導電性経路はいずれも定義しない、請求項7に記載のイメージング・システム。
請求項14
前記磁気共鳴スキャナーの勾配コイルが:前記等角面に中心が置かれた環状ギャップを有する分割勾配コイル、放射線検出器のリング、及び前記分割勾配コイルの環状ギャップに配置されている概して環状の電子回路ボード、を有する請求項7に記載のイメージング・システム。
請求項15
前記磁気共鳴スキャナーの勾配コイルが:前記等角面に中心が置かれた環状溝を有し、前記放射線検出器のリング及び前記概して環状の電子回路ボードを受け取る勾配コイル、を有する請求項7に記載のイメージング・システム。
請求項16
2つの実質的に同時の511keV放射線検出イベント間の飛行時間の相違を識別するように構成され、前記概して環状の電子回路ボードによって定義される電気信号伝送遅延を説明するプロセッサ、を含む請求項1に記載のイメージング・システム。
請求項17
円筒軸を定義する円筒穴を有する磁気共鳴スキャナーであり、該磁気共鳴スキャナーは、該穴の内部におけるアイソセンタ及び該アイソセンタを通り抜け、前記円筒軸を横断する方向に配置された等角面を定義する磁場勾配コイルを含む磁気共鳴スキャナー;前記円筒穴と同心で配置され、前記穴の内部から放射される放射線を検出するように構成された、放射線検出器のリング;及び前記円筒穴と同心で配置され、前記等角面に中心が置かれた概して環状の電子回路ボードであり、前記放射線検出器のリングによる放射線の検出を示す電気信号を発するように前記放射線検出器のリングに動作可能なように接続された概して環状の電子回路ボード;を有するイメージング・システム。
請求項18
前記概して環状の電子回路ボードが:前記磁場勾配コイルの等角面において存在する環状ディスク、を有する請求項17に記載のイメージング・システム。
請求項19
前記該して環状の電子回路ボードが、前記放射線検出器の最大半径よりも大きい半径で配置されている、請求項17に記載のイメージング・システム。
請求項20
前記概して環状の電子回路ボードが、前記等角面において存在する環状ディスク、及び該等角面に関して対称的に配置された2つの放射線検出器のリングを含む放射線検出器のリング、を有する請求項17に記載のイメージング・システム。
請求項21
前記磁気共鳴スキャナーの勾配コイルが:前記円筒穴に同心で配置された分割勾配コイル、放射線検出器のリング、及び該分割勾配リングの環状ギャップに配置されている概して環状の電子回路ボード、を定義する請求項17に記載のイメージング・システム。
請求項22
前記磁気共鳴スキャナーの勾配コイルが:前記円筒穴に同心で配置された勾配コイルを含み、該勾配コイルは、前記等角面に中心が置かれた環状溝を有し、前記放射線検出器及び前記概して環状の電子回路ボードを受け入れる、請求項17に記載のイメージング・システム。
請求項23
アイソセンタ及び等角面を定義する勾配コイルを有する円筒穴磁気共鳴スキャナーを使用して磁気共鳴データを取得する段階;放射線検出器のリングを使用して放射線を検出する段階;及び前記等角面に配置された導電性経路に沿って検出された放射線を示す電気信号を伝導する段階;を含むイメージング法。
請求項24
前記等角面に配置された導電性経路に沿って電力を前記放射線検出器のリングに分配する段階;をさらに含む請求項23に記載のイメージング法。
类似技术:
公开号 | 公开日 | 专利标题
Stockmann et al.2016|A 32‐channel combined RF and B0 shim array for 3T brain imaging
US9983279B2|2018-05-29|Radio frequency | birdcage coil with separately controlled ring members and rungs for use in a magnetic resonance | imaging system
JP5174813B2|2013-04-03|Tofpetの再構成を改良するための方法及びシステム
JP4772554B2|2011-09-14|陽電子放出断層撮影−磁気共鳴断層撮影複合装置および陽電子放出断層撮影−磁気共鳴断層撮影複合装置による検査空間内の検査対象の画像表示方法
Lucas et al.2006|Development of a combined microPET®-MR system
US8378306B2|2013-02-19|Dual amplifier for MR-PET hybrid imaging system
JP6088297B2|2017-03-01|イメージングシステム及び方法
US8386011B2|2013-02-26|Motion detection in medical systems
Pichler et al.2008|PET/MRI hybrid imaging: devices and initial results
US10307616B2|2019-06-04|Medical apparatus with a radiation therapy device and a radiation detection system
Yamamoto et al.2011|Development of a brain PET system, PET-Hat: a wearable PET system for brain research
KR20060130050A|2006-12-18|단층촬영장치 및 방법
US20030088181A1|2003-05-08|Method of localizing an object in an MR apparatus, a catheter and an MR apparatus for carrying out the method
US20080238424A1|2008-10-02|Compact and Flexible Radio Frequency Coil Arrays
JP2006075596A|2006-03-23|Pet−mriハイブリッドシステム
US8452378B2|2013-05-28|Method for determining attenuation values for PET data of a patient
Disselhorst et al.2014|Principles of PET/MR imaging
US4486711A|1984-12-04|Gradient field coil system for nuclear spin tomography
JP5666091B2|2015-02-12|イメージングシステム用磁気トラッキングシステム
CN102695450B|2017-02-15|Pet‑mri装置
EP2241905B1|2017-04-05|PET-MRI combination apparatus
Hong et al.2008|An investigation into the use of Geiger-mode solid-state photomultipliers for simultaneous PET and MRI acquisition
US8810243B2|2014-08-19|Method for imaging a portion of an examination object in a magnetic resonance scanner
US7218112B2|2007-05-15|Combined MR/PET system
US7522952B2|2009-04-21|Combined positron emission tomography and magnetic resonance tomography unit
同族专利:
公开号 | 公开日
RU2010139476A|2012-04-20|
EP2247962B1|2014-04-09|
EP2247962A2|2010-11-10|
WO2009107005A2|2009-09-03|
US8547100B2|2013-10-01|
JP5390539B2|2014-01-15|
US20110018541A1|2011-01-27|
CN101960330B|2013-12-04|
RU2496125C2|2013-10-20|
WO2009107005A3|2010-03-18|
CN101960330A|2011-01-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JP2006506155A|2002-11-20|2006-02-23|コーニンクレッカフィリップスエレクトロニクスエヌヴィKoninklijkePhilipsElectronicsN.V.|磁気共鳴撮像用の自己遮蔽傾斜磁場コイル|
JP2006105601A|2004-09-30|2006-04-20|Hitachi Ltd|核医学診断装置および核医学診断装置の冷却方法|
WO2006071922A2|2004-12-29|2006-07-06|Siemens Medical Solutions Usa, Inc.|Combined pet/mr imaging system and apd-bassed pet detector for use in simultaneous pet/mr imaging|
WO2006111869A2|2005-04-22|2006-10-26|Koninklijke Philips Electronics N.V.|Pet/mr scanner with time-of-flight capability|WO2013161908A1|2012-04-24|2013-10-31|株式会社東芝|Pet-mri装置|
JP2015518764A|2012-06-05|2015-07-06|コーニンクレッカ フィリップス エヌ ヴェ|特にmriシステムで使用されるtem共振器システム|
JP2017529111A|2014-06-23|2017-10-05|コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V.|一体型光子検出器リングを有する磁気共鳴イメージングシステム|US5389909A|1993-11-08|1995-02-14|General Electric Company|Open architecture magnetic resonance imaging passively shimmed superconducting magnet assembly|
JP3663262B2|1995-10-23|2005-06-22|ゼネラル・エレクトリック・カンパニイGeneralElectricCompany|開放形磁気共鳴作像磁石|
US6198957B1|1997-12-19|2001-03-06|Varian, Inc.|Radiotherapy machine including magnetic resonance imaging system|
US6445182B1|1998-04-24|2002-09-03|Case Western Reserve University|Geometric distortion correction in magnetic resonance imaging|
WO2002063638A1|2001-02-06|2002-08-15|Gesellschaft für Schwerionenforschung mbH|Gantry system for transport and delivery of a high energy ion beam in a heavy ion cancer therapy facility|
US20020195565A1|2001-06-26|2002-12-26|European Organization For Nuclear Research|PET scanner|
US7180074B1|2001-06-27|2007-02-20|Crosetto Dario B|Method and apparatus for whole-body, three-dimensional, dynamic PET/CT examination|
GB0115742D0|2001-06-28|2001-08-22|Univ Cambridge Tech|Combined pet-mri apparatus|
US6946841B2|2001-08-17|2005-09-20|Igor Rubashov|Apparatus for combined nuclear imaging and magnetic resonance imaging, and method thereof|
DE10246310A1|2002-10-04|2004-04-22|Siemens Ag|Gradient coil system and magnetic resonance device with the gradient coil system|
US6894498B2|2003-03-12|2005-05-17|Mrscience Llc|Active vibration compensation for MRI gradient coil support to reduce acoustic noise in MRI scanners|
CN100507593C|2003-03-25|2009-07-01|西门子公司|磁场发生器及带有该磁场发生器的磁共振设备|
US7126126B2|2003-10-16|2006-10-24|Brookhaven Science Associates, Llc|Compact conscious animal positron emission tomography scanner|
EP1761794B8|2004-06-17|2009-06-10|Philips Electronics N.V.|Magnetic resonance imaging system with iron-assisted magnetic field gradient system|
DE102005015070B4|2005-04-01|2017-02-02|Siemens Healthcare Gmbh|Combined positron emission tomography and magnetic resonance tomography device|
KR101273965B1|2005-04-22|2013-06-12|코닌클리케 필립스 일렉트로닉스 엔.브이.|검출기 픽셀, 방사선 검출기, tof-pet 영상화 시스템, 신틸레이터와 함께 수행되는 방법, 및 의료 영상을 생성하는 방법|
US7218112B2|2005-05-12|2007-05-15|Siemens Aktiengesellschaft|Combined MR/PET system|
DE102005040107B3|2005-08-24|2007-05-31|Siemens Ag|Combined PET-MRI device and method for the simultaneous capture of PET images and MR images|
CA2651047C|2006-06-20|2014-04-29|Imris Inc.|Movable integrated scanner for surgical imaging applications|
US7488943B2|2006-07-17|2009-02-10|General Electric Company|PET detector methods and apparatus|
EP2117427B1|2007-01-11|2016-11-30|Koninklijke Philips N.V.|Pet/mr scanners for simultaneous pet and mr imaging|
WO2008122899A1|2007-04-04|2008-10-16|Koninklijke Philips Electronics N.V.|Split gradient coil and pet/mri hybrid system using the same|
DE102007037103B4|2007-08-07|2015-12-17|Siemens Aktiengesellschaft|Method and apparatus for visualizing functional and electrical activities of the brain|
DE102007037102B4|2007-08-07|2017-08-03|Siemens Healthcare Gmbh|Combined MR / PET device on a mobile basis|
JP5390539B2|2008-02-25|2014-01-15|コーニンクレッカフィリップスエヌヴェ|放射線検出器に対する等角面のバックボーン|
DE102008025677B4|2008-05-29|2012-09-27|Siemens Aktiengesellschaft|Magnetic resonance device with a PET unit|
CN102356087A|2009-03-19|2012-02-15|惠氏有限责任公司|[2--烯-2-基)乙基]膦酸及其前体的制备方法|
US20110270078A1|2010-04-30|2011-11-03|Wagenaar Douglas J|Methods and systems of combining magnetic resonance and nuclear imaging|
US20120265050A1|2011-04-04|2012-10-18|Ge Wang|Omni-Tomographic Imaging for Interior Reconstruction using Simultaneous Data Acquisition from Multiple Imaging Modalities|WO2008122899A1|2007-04-04|2008-10-16|Koninklijke Philips Electronics N.V.|Split gradient coil and pet/mri hybrid system using the same|
JP5390539B2|2008-02-25|2014-01-15|コーニンクレッカフィリップスエヌヴェ|放射線検出器に対する等角面のバックボーン|
DE102008025677B4|2008-05-29|2012-09-27|Siemens Aktiengesellschaft|Magnetic resonance device with a PET unit|
JP5322277B2|2009-03-16|2013-10-23|日立金属株式会社|Pet/mri一体型装置|
CN105664378B|2009-07-15|2019-06-28|优瑞技术公司|用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置|
AU2010321714B2|2009-11-20|2014-10-23|Viewray Technologies, Inc.|Self shielded gradient coil|
JP5789861B2|2010-11-01|2015-10-07|国立研究開発法人放射線医学総合研究所|PET-MRI equipment|
WO2012093730A1|2011-01-06|2012-07-12|株式会社東芝|Pet-mri装置|
CN102967835B|2011-08-31|2017-07-04|通用电气公司|用于磁共振成像设备的螺旋梯度线圈|
US8981779B2|2011-12-13|2015-03-17|Viewray Incorporated|Active resistive shimming fro MRI devices|
EP2746800A1|2012-12-20|2014-06-25|Universiteit Gent|Molecular gradient coil for hybrid SPECT-MRI imaging system|
US9442130B2|2014-09-11|2016-09-13|Toshiba Medical Systems Corporation|Detection of shock in detector electronics|
US9606245B1|2015-03-24|2017-03-28|The Research Foundation For The State University Of New York|Autonomous gamma, X-ray, and particle detector|
法律状态:
2012-02-01| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120131 |
2013-03-21| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130319 |
2013-06-20| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130619 |
2013-09-09| TRDD| Decision of grant or rejection written|
2013-09-18| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
2013-10-17| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131010 |
2013-10-18| R150| Certificate of patent or registration of utility model|Ref document number: 5390539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2016-10-18| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2017-10-24| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2018-10-23| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-10-23| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-10-18| LAPS| Cancellation because of no payment of annual fees|
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]